20.10.12~20.10.18 NASA Supercomputing Study Breaks Ground For Tree Mapping, Carbon Research


Scientists from NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and international collaborators demonstrated a new method for mapping the location and size of trees growing outside of forests, discovering billions of trees in arid and semi-arid regions and laying the groundwork for more accurate global measurement of carbon storage on land.

Using powerful supercomputers and machine learning algorithms, the team mapped the crown diameter – the width of a tree when viewed from above – of more than 1.8 billion trees across an area of more than 500,000 square miles, or 1,300,000 square kilometers. The team mapped how tree crown diameter, coverage, and density varied depending on rainfall and land use.

Mapping non-forest trees at this level of detail would take months or years with traditional analysis methods, the team said, compared to a few weeks for this study. The use of very high-resolution imagery and powerful artificial intelligence represents a technology breakthrough for mapping and measuring these trees. This study is intended to be the first in a series of papers whose goal is not only to map non-forest trees across a wide area, but also to calculate how much carbon they store – vital information for understanding the Earth’s carbon cycle and how it is changing over time.

Measuring carbon in treesCarbon is one of the primary building blocks for all life on Earth, and this element circulates among the land, atmosphere, and oceans via the carbon cycle. Some natural processes and human activities release carbon into the atmosphere, while other processes draw it out of the atmosphere and store it on land or in the ocean. Trees and other green vegetation are carbon “sinks,” meaning they use carbon for growth and store it out of the atmosphere in their trunks, branches, leaves and roots. Human activities, like burning trees and fossil fuels or clearing forested land, release carbon into the atmosphere as carbon dioxide, and rising concentrations of atmospheric carbon dioxide are a main cause of climate change.

“There are important ecological processes, not only inside, but outside forests too,” said Jesse Meyer, a programmer at NASA Goddard who led the processing on Blue Waters. “For preservation, restoration, climate change, and other purposes, data like these are very important to establish a baseline. In a year or two or ten, the study could be repeated with new data and compared to data from today, to see if efforts to revitalize and reduce deforestation are effective or not. It has quite practical implications.”

“Future papers in the series will build on the foundation of counting trees, extend the areas studied, and look ways to calculate their carbon content,” said Tucker. NASA missions like the Global Ecosystem Dynamics Investigation mission, or GEDI, and ICESat-2, or the Ice, Cloud, and Land Elevation Satellite-2, are already collecting data that will be used to measure the height and biomass of forests. In the future, combining these data sources with the power of artificial intelligence could open up new research possibilities.

“Our objective is to see how much carbon is in isolated trees in the vast arid and semi-arid portions of the world,” Tucker said. “Then we need to understand the mechanism which drives carbon storage in arid and semi-arid areas. Perhaps this information can be utilized to store more carbon in vegetation by taking more carbon dioxide out of the atmosphere.”

An excerpt form https://scienceblog.com/519066/nasa-supercomputing-study-breaks-ground-for-tree-mapping-carbon-research/